Многозадачности удалось добиться благодаря сходству структуры сети с устройством сенсорно-моторных и когнитивных регионов мозга.
Способность мозга решать сложные проблемы вдохновила исследователей изучать различные методы обработки информации и нейронного обучения.
Мы использовали результаты недавних когнитивных нейрофизиологических экспериментов для разработки новой архитектуры рекуррентной импульсной нейросети, которую можно обучить решению множества различных задач. Изучение механизмов ее работы значительно расширило наши представления о том, как функционируют естественные и искусственные нейронные сети
— исследователи.
Несмотря на успехи уже существующих нейросетей, практически все они обладают одним общим недостатком — в подавляющем большинстве случаев они способны справляться только с одним типом задач. Это связано с тем, что нейронные сети обучаются на конкретных наборах данных, и их способность к обобщению ограничена. Исследование российских ученых под руководством Владимира Некоркина Института прикладной физики РАН (Нижний Новгород) позволит создавать более универсальные модели, которые могут решать несколько типов задач
Основой для разработки нейросети послужили недавние эксперименты на обезьянах и других модельных животных. Нейрофизиологи изучали как нервная система приматов решает задачи, в том числе определяет направление движения объектов на экране или принимает разные решения в зависимости от того, какие фигуры выводятся на дисплей компьютера.
Исследователи задействовали эти данные для создания нейросети, элементы которой были способны обмениваться короткими импульсами друг с другом, а также активироваться в разное время, что делает их более похожими на реальную нервную систему. Эту нейросеть ученые обучили решать шесть разных классов задач, относящихся к двум большим условным группам — задачам выбора и повторения.
После этого исследователи проследили за тем, сможет ли их проект справиться с тестом из ста случайным образом скомбинированных задач всех шести типов. Проверка подтвердила работоспособность нейросети и позволила раскрыть принципы устройства этой системы ИИ, в том числе обнаружить внутри нее группы из специализированных нейронов. Эти результаты помогут ускорить разработку более сложных «многозадачных» нейросетей.
Евгения Бусина