Русские Вести

Как появились биологические часы


Система белков KaiA, KaiB и KaiC, составляющих «безнуклеиновую» пружину суточных ритмов у цианобактерий Synechococcus elongatus.

Суточные ритмы возникли для защиты от ультрафиолетового излучения и окислительного стресса.

Множество живых организмов носит в себе особенные часы – специальные молекулярно-генетические механизмы, чья активность меняется в зависимости от времени суток, задавая тем самым суточные, или циркадные биологические ритмы. Конечно, самое привычное проявление таких ритмов – цикл сна и бодрствования: нам начинает хотеться спать, когда наступает ночь, и мы просыпаемся, когда рассветает.

Но биологические часы определяют не только время сна, они вмешиваются в обмен веществ, в физиологию, в поведение. Свои «часовые отделы» есть едва ли не во всех органах и тканях нашего тела, а не только в мозге, причём часы в органах обладают некоторой самостоятельностью, хотя обычно и согласуют свои действия с мозговым регулятором. 

Об истории открытия биологических часов и том, как расшифровывали их механизм, мы уже писали. Но суточные ритмы, как было сказано, есть не только у человека, они есть у других животных, у растений, у водорослей и даже у некоторых бактерий. Это значит, что они возникли довольно давно. И тогда возникает вопрос – как вообще биологические часы возникли и как шла их эволюция. Здесь, как и в случае других крупных эволюционных «изобретений», есть два мнения.

Согласно одному, суточные ритмы возникали неоднократно у разных групп организмов. Согласно другой точке зрения, все современные «биочасы» произошли от какого-то одного предкового устройства. Конечно, прототип был устроен не в пример проще, нежели нынешние механизмы, управляющие сном и метаболизмом, но общий принцип, скорее всего, остался тот же.  

 Цианобактерии рода Synechococcus. Цианобактерии – единственная группа бактерий, обзаведшаяся циркадным ритмом. 

Пока количество РНК росло, деятельность таких ферментов не была заметна, но теперь, когда РНК уже не синтезируется, протеазы уничтожают часовой белок, пока, наконец, он не уходит с ДНК, тем самым разрешая снова начать синтез своей РНК. Иными словами, часовой ген и белок, который он кодирует, связаны отрицательной обратной связью, которая может реализовываться через другие молекулы-посредники. (Характерный пример – молекулярная чехарда у Neurospora crassa: у этого плесневого грибка ген биологических часов управляет суточным ритмом с помощью двух РНК, одна из которых мешает работать другой; более подробно об исследовании регуляции биологических часов у N. crassa можно прочесть в нашей прошлогодней заметке).

Червь Platynereis dumerilii, размножающийся по лунному циклу.

Но зачем вообще живым организмам понадобились часы? Например, для того, чтобы лучше защитить гены от повреждений ультрафиолетом – днём гены, отвечающие за циркадный ритм, могли усиливать работу других генов, отвечающих за ремонт ДНК. То есть суточные ритмы могли бы возникнуть, чтобы распределить «по сменам» молекулярные машины, выполняющие репликацию и репарацию ДНК: ночью ДНК бы удваивалась, а репарационные системы работали бы днём, и реплицирующие белки им бы не мешали. Действительно, гены, вовлечённые в регуляцию биологических часов, часто регулируют вдобавок и процессы, связанные с починкой ДНК. Так что такое объяснение происхождения суточных ритмов вполне имеет право на существование. И то, что нынешние биологические ритмы опираются на включения-отключения синтеза РНК и белков, также говорит в её пользу. 

Однако сравнительно недавно выяснилось, что у сине-зелёных водорослей Synechococcus elongatus молекулярный аппарат суточных ритмов с ДНК вообще никак не связан. Цианобактерии обладают едва ли не самой простой «моделью» часов, состоящей всего из трёх необходимых белков, называемых KaiA, KaiB и KaiC, и двух вспомогательных (часы S. elongatus благодаря их простоте даже удалось пересадить в другую бактерию, о чём мы недавно писали).

Тройка KaiA, KaiB и KaiC готовит бактериальную клетку к наступлению дня, что в первую очередь касается фотосинтетического аппарата цианобактерии. Если поместить эти белки в пробирку и добавить к ним источник энергии и фосфатных групп в виде АТФ (аденозинтрифосфата), то «часы» начнут «идти»: молекулы KaiC с помощью двух других белков будут то приобретать, то терять остатки фосфорной кислоты; дневной KaiC будет без фосфата, ночной – с фосфатом.

Когда в 2005 году Такао Кондо (Takao Kondo) из Университета Нагоя вместе с коллегами опубликовал в Science статью с описанием работы часов S. elongatus, все сильно удивились: здесь не нужны были никакие ДНК или РНК, здесь не происходило никакого периодического включения-выключения белкового синтеза. Безусловно, трёхбелковый механизм цианобактерий регулирует жизнь клетки, влияя на синтез РНК, ДНК и белков, однако речь в данном случае о том, что молекулярная «пружина» механизма сам по себе вполне обходится вышеописанных РНК-белковых колебаний.

Значит ли это, что циркадные ритмы вообще могли возникнуть безо всякой связи с ДНК? Не обязательно: сине-зелёные водоросли эволюционно разошлись с общим предком животных около миллиарда лет назад, и система KaiA-KaiB-KaiC ничем не напоминает часовые белки млекопитающих или насекомых. Так что вполне может быть, что у животных биологические часы развивались изначально по другой модели, с обязательной привязкой к ДНК.

Однако в 2011 году в Nature появилась другая статья, в которой Джон О'Нил (John O’Neill) и Ахилеш Редди (Akhilesh Reddy)из Кембриджа рассказывали про суточные ритмы у человеческих эритроцитов – а у наших эритроцитов, напомним, нет ядра и нет ДНК. В данном случае в часовом ритме работали белки пероксиредоксины, чья задача – очищать клетки от пероксида водорода, который является сильным окислителем и может повредить множество нужных молекул в клетке. Сам же пероксид возникает как побочный продукт метаболических процессов, необходимых для получения энергии.

Рачок Eurydice pulchra. 

Пероксиредоксины – универсальные белки, они есть у многих организмов. В частности, у одноклеточной зелёной водоросли Ostreococcus tauri, которую использовали в другой серии экспериментов. Оказалось, что и у неё активность антиоксидантного белка зависит от времени суток: количество связанного с белком опасного агрессивного кислорода увеличивалось и уменьшалось по 24-часовому расписанию. Впоследствии такие же пероксиредоксиновые циклы были найдены у насекомых, растений, грибов, цианобактерий и архей. То есть биологические часы, связанные с защитой от окислительного стресса, были у представителей всех доменов жизни. Почему они вдруг всем понадобились?

Известно, что около 2,3 миллиардов лет назад случилась кислородная катастрофа: цианобактерии научились кислородному фотосинтезу, и с тех пор Земля, как говорится, уже никогда не была прежней, потому что на ней радикально изменилась атмосфера. Живые организмы, столкнувшись с кислородом, вынуждены были либо уйти в анаэробные экологические ниши, либо научиться противостоять новому мощному окислителю. Появились молекулы, которые могли гасить окислительный стресс.

Поначалу они работали, как говорится, по факту накопления кислорода: если его становилось больше, то в клетках повышалась активность антиоксидантов. Однако в те времена кислорода было мало, и уровень его, как легко догадаться, заметно поднимался именно в светлое время суток, когда начинался фотосинтез. Антиоксидантные суточные часы стали большим достижением: действительно, если количество кислорода повышается всегда в одно и то же время, то почему бы не подготовиться к этому заранее? 

Итак, у нас есть уже две причины возникновения биологических ритмов, которые могли возникнуть как оптимизация защиты от ультрафиолета и как ответ на периодический окислительный стресс. Механизмы тут тоже вроде бы разные: уже много раз упомянутые РНК-белковые колебания, трёхбелковое устройство сине-зелёных S. elongatus и пероксиредоксиновый механизм.

Однако, как говорит сам Джон О'Нил, пероксиредоксины – не столько «пружина» часов, сколько «стрелки». Разное количество кислорода, которое они связывают, есть лишь показатель времени, но не причина суточной цикличности в их работе. По сути, в случае с пероксиредоксинами у нас есть лишь набор феноменов (пусть и встречающихся во всех доменах жизни), которые не укладываются в представление о биологических часах, которые всегда опираются на РНК-белковые осцилляции. И мы лишь можем предполагать, что существует общий древний молекулярный механизм, который оказался годным для решения разных задач: защиты ДНК от ультрафиолета, защиты от кислородных радикалов и др. Тогда и пероксиредоксины, и колебательные изменения РНК – лишь надстройки, видимая часть такого механизма. Какой же тогда может быть «пружина часов»?

Например, ею могут быть два фермента: казеинкиназа 1 и киназа гликогенсинтетазы 3. Функция киназ как класса ферментов – добавлять к белковым молекулам фосфатные группы, что довольно сильно влияет на функционирование и судьбу белков: они могут начать активно работать, переключиться на другой субстрат или отправиться в утиль. Обе киназы играют важную роль в регуляции пероксиредоксиновых часов, и система фосфорилирующих ферментов вполне могла быть самым древним механизмом, отмеряющим ритм биологическим процессам. 

В пользу такой гипотезы говорит то, что даже у тех организмов, у которых нет суточных ритмов, есть киназно-пероксиредоксиновая система, задающая некие периоды в биохимии клеток. В апреле этого года в статье в Current Biology О'Нил вместе с коллегами описал своеобразные дыхательные циклы у пекарских дрожжей: у них потребление кислорода периодически возрастает и падает, и каждый период длится несколько часов.

Рыба Phreatichthys andruzzii обитает в подземных водоёмах на территории сомалийской пустыни и обладает биологическими часами с 47-часовым периодом.

Если выключить у дрожжей (у которых, повторим, нет суточного 24-часового ритма) казеинкиназу 1, то дыхательные ритмы исчезнут. С другой стороны та же казеинкиназа участвует в регуляции суточного ритма у мышей. Есть большое искушение придумать некую простую киназную часовую систему, подобную белкам KaiA, KaiB и KaiC у сине-зелёных водорослей, и сказать, что так и выглядели древнейшие биологические часы – по крайней мере, у предков растений и животных. Однако, увы, пока что нет никаких доказательств, что суточные ритмы и впрямь начали развиваться с киназного механизма.  

До сих пор мы обсуждали только тот вариант, когда «биочасы» возникают в эволюции один, от силы два раза, и все остальные их варианты есть лишь модификации исходной модели. Однако есть некоторые данные в пользу того, что появление регулирующих ритмов – не такая уж сложная задача. Не нужно большого труда, чтобы заметить, что многие виды живут ещё и по другим, несуточным часам, следя за приливами или, например, сменой времён года. Поведение и физиология веслоногого рачка Eurydice pulchra подчинены приливно-отливному циклу с периодом 12,4 ч, а морской червь Platynereis dumerilii размножается по лунному календарю.

Можно было бы предположить, что и приливно-отливный, и лунный ритмы подчинены суточному (который также есть и у рачка, и у червя), однако недавние исследования показали, что у этих беспозвоночных лунные и приливно-отливные биологические часы работают независимо от циркадных. С другой стороны, есть пример подземной слепой рыбы Phreatichthys andruzzii, которая живёт по уникальному 47-часовому циклу: её часы согласованы с обеденным расписанием и, отчасти, с изменениями температуры окружающей среды. Наконец, существуют месячные периоды менструального цикла, и не далее как в мае мы рассказывали про иммунные гены, чья активность меняется в зависимости от времени года.

В общем, можно сделать острожный вывод, что некогда эволюции «понравилась» сама идея ритмической регуляции процессов жизнедеятельности, а вот конкретный период и конкретные механизмы, отсчитывающие период хода, могут довольно сильно отличаться друг от друга. Наибольшее внимание мы уделяем суточным часам – да и как не уделять им внимания, когда мы каждое утро просыпаемся и каждый вечер ложимся спать – и потому они изучены лучше всего. Но, как знать, возможно, что какие-то более «долгие» часы, оказывают на нашу жизнь влияние отнюдь не меньшее, хотя, возможно, все они работают от одной и той же молекулярно-генетической «пружины». 

Кирилл Стасевич

Источник: www.nkj.ru