Русские Вести

Что такое галактика


История изучения планет и звёзд измеряется тысячелетиями, Солнца, комет, астероидов и метеоритов – столетиями. А вот галактики, разбросанные по Вселенной скопления звёзд, космического газа и пылевых частиц, стали объектом научного исследования лишь в 1920-е годы.

Галактики наблюдали с незапамятных времён. Человек с острым зрением может различить на ночном небосводе светлые пятна, похожие на капли молока. В Х веке персидский астроном Абд-аль-Раман аль-Суфи упомянул в своей «Книге о неподвижных звёздах» два подобных пятна, известных теперь как Большое Магелланово облако и галактика М31, она же Андромеда. С появлением телескопов астрономы наблюдали все больше таких объектов, получивших название туманностей. Если английский астроном Эдмунд Галлей в 1716 году перечислил всего шесть туманностей, то каталог, опубликованный в 1784 году астрономом французского военно-морского флота Шарлем Мессье, содержал уже 110 — и среди них четыре десятка настоящих галактик (в том числе и М31). В 1802 году Уильям Гершель опубликовал перечень из 2500 туманностей, а его сын Джон в 1864 году издал каталог, где было более 5000 туманностей.

Галактика Андромеда 
 

Наша ближайшая соседка, галактика Андромеда (M31) – один из излюбленных небесных объектов для любительских астрономических наблюдений и фотосъёмки.

Природа этих объектов долгое время ускользала от понимания. В середине XVIII века некоторые проницательные умы увидели в них звёздные системы, подобные Млечному Пути, однако телескопы в то время не предоставляли возможности проверить эту гипотезу. Столетием позже восторжествовало мнение, что каждая туманность — это газовое облако, подсвеченное изнутри молодой звездой. Позже астрономы убедились, что некоторые туманности, в том числе и Андромеда, содержат множество звёзд, однако ещё долго не было ясно, расположены они в нашей Галактике или за её пределами. И лишь в 1923—1924 годах Эдвин Хаббл определил, что расстояние от Земли до Андромеды как минимум троекратно превосходит диаметр Млечного Пути (на самом деле примерно в 20 раз) и что М33, другая туманность из каталога Мессье, удалена от нас на никак не меньшую дистанцию. Эти результаты положили начало новой научной дисциплине — галактической астрономии.

Галактики
 

В 1926 году знаменитый американский астроном Эдвин Пауэлл Хаббл предложил (а в 1936 году модернизировал) свою классификацию галактик по их морфологии. Из-за характерной формы эту классификацию называют ещё «Камертоном Хаббла». На «ножке» камертона находятся эллиптические галактики, на зубцах вилки – линзовидные галактики без рукавов и спиральные галактики без бара-перемычки и с баром. Галактики, которые не могут быть классифицированы как один из перечисленных классов, называются неправильными, или иррегулярными.

Карлики и гиганты

Вселенная заполнена галактиками разного размера и разных масс. Их количество известно весьма приблизительно. В 2004 году орбитальный телескоп «Хаббл» за три с половиной месяца обнаружил около 10 000 галактик, сканируя в южном созвездии Печи участок небосвода, в сто раз меньший, нежели площадь лунного диска. Если предположить, что галактики распределяются по небесной сфере с такой же плотностью, получится, что в наблюдаемом космосе их 200 млрд. Однако эта оценка сильно занижена, поскольку телескоп не смог заметить великое множество очень тусклых галактик.

Галактика 
 

Форма и содержание

Галактики различаются и морфологией (то есть формой). В целом их подразделяют на три основных класса — дисковидные, эллиптические и неправильные (иррегулярные). Это общая классификация, есть гораздо более детальные.

Галактики 
 

Галактики распределены в космическом пространстве вовсе не хаотично. Массивные галактики нередко окружены небольшими галактиками-спутниками. И наш Млечный Путь, и соседняя Андромеда имеют не менее 14 сателлитов, и, скорее всего, их гораздо больше. Галактики любят объединяться в пары, тройки и более крупные группы из десятков гравитационно связанных партнёров. Ассоциации побольше, галактические кластеры, содержат сотни и тысячи галактик (первый из таких кластеров открыл ещё Мессье). Порой в центре кластера наблюдается особо яркая гигантская галактика, возникшая, как считают, в процессе слияния галактик меньшего калибра. И наконец, есть ещё и суперкластеры, в которые входят как галактические кластеры и группы, так и отдельные галактики. Обычно это вытянутые структуры протяжённостью до сотни мегапарсек. Их разделяют почти полностью свободные от галактик космические пустоты такого же размера. Суперкластеры уже не организованы в какие-либо структуры более высокого порядка и разбросаны по Космосу случайным образом. По этой причине в масштабах нескольких сотен мегапарсек наша Вселенная однородна и изотропна.

Дисковидная галактика — это звёздный блин, вращающийся вокруг оси, проходящей через его геометрический центр. Обычно по обе стороны центральной зоны блина имеется овальное вздутие — балдж (от англ. bulge). Балдж тоже вращается, однако с меньшей угловой скоростью, нежели диск. В плоскости диска нередко наблюдаются спиральные ветви, изобилующие сравнительно молодыми яркими светилами. Однако есть галактические диски и без спиральной структуры, где таких звёзд много меньше.

Центральную зону дисковидной галактики может рассекать звёздная перемычка — бар. Пространство внутри диска заполнено газопылевой средой — исходным материалом для новых звёзд и планетных систем. Галактика имеет два диска: звёздный и газовый. Они окружены галактическим гало — сферическим облаком разреженного горячего газа и темной материи, которая и вносит основной вклад в полную массу галактики. Гало вмещает также отдельные старые звезды и шаровые звёздные скопления (глобулярные кластеры) возрастом до 13 млрд лет. В центре едва ли не любой дисковидной галактики, как с балджем, так и без балджа, расположена сверхмассивная чёрная дыра. Самые крупные галактики этого типа содержат по 500 млрд звёзд.

Млечный путь

Солнце обращается вокруг центра вполне рядовой спиральной галактики, в состав которой входят 200-400 миллиардов звёзд. Её диаметр приблизительно равен 28 килопарсекам (чуть больше 90 световых лет). Радиус солнечной внутригалактической орбиты — 8,5 килопарсек (так что наше светило смещено к внешнему краю галактического диска), время полного оборота вокруг центра Галактики — примерно 250 миллионов лет.

Балдж Млечного Пути имеет эллипсовидную форму и наделён баром, который обнаружили совсем недавно. В центре балджа находится компактное ядро, заполненное звёздами различного возраста — от нескольких миллионов лет до миллиарда и старше. Внутри ядра за плотными пылевыми облаками скрывается достаточно скромная по галактическим стандартам чёрная дыра — всего лишь 3,7 миллиона солнечных масс.

Наша Галактика может похвастаться двойным звёздным диском. На долю внутреннего диска, который имеет по вертикали не более 500 парсек, приходится 95% звёзд дисковой зоны, в том числе все молодые яркие звезды. Его охватывает внешний диск толщиной в полторы тысячи парсек, где обитают звезды постарше. Газовый (точнее, газо-пылевой) диск Млечного Пути имеет в толщину не менее 3,5 килопарсек. Четыре спиральных рукава диска представляют собой области повышенной плотности газо-пылевой среды и содержат большинство самых массивных звёзд. 

Диаметр гало Млечного Пути не менее, чем вдвое больше диаметра диска. Там обнаружено порядка 150 глобулярных кластеров, причём, скорее всего, ещё с полсотни пока не открыты. Возраст старейших кластеров превышает 13 миллиардов лет. Гало заполнено темной материей, имеющей комковатую структуру. До недавнего времени полагали, что гало почти шарообразно, однако, по последним данным, оно может быть значительно приплюснуто. Общая масса Галактики может составлять до 3 триллионов солнечных масс, причём на долю темной материи приходится 90-95%. Масса звёзд Млечного Пути оценивается в 90-100 миллиардов масс Солнца.

Эллиптическая галактика, как и следует из её названия, имеет форму эллипсоида. Она не вращается как целое и потому не обладает осевой симметрией. Её звезды, которые в основном имеют сравнительно небольшую массу и солидный возраст, обращаются вокруг галактического центра в разных плоскостях и иногда не по отдельности, а сильно вытянутыми цепочками. Новые светила в эллиптических галактиках загораются редко в связи с дефицитом исходного сырья — молекулярного водорода.

Галактики 
 

Подобно людям, галактики объединяются в группы. Наша Местная группа включает две самые крупные галактики в окрестностях размером порядка 3 мегапарсек – Млечный путь и Андромеду (M31), галактику Треугольника, а также их спутники – Большое и Малое Магеллановы облака, карликовые галактики в Большом Псе, Пегасе, Киле, Секстанте, Фениксе, и ещё множество других – всего числом около полусотни. Местная группа в свою очередь является членом местного сверхскопления Девы.

Как самые крупные, так и самые мелкие галактики относятся к эллиптическому типу. Общая доля его представителей в галактическом населении Вселенной всего около 20%. Эти галактики (возможно, за исключением самых мелких и тусклых) также скрывают в своих центральных зонах сверхмассивные черные дыры. Эллиптические галактики имеют и гало, но не столь чёткие, как у дисковидных.

Все прочие галактики считаются иррегулярными. Они содержат много пыли и газа и активно порождают молодые звезды. На умеренных расстояниях от Млечного Пути таких галактик немного, всего-то 3%. Однако среди объектов с большим красным смещением, чей свет был испущен не позже, чем через 3 млрд лет после Большого взрыва, их доля резко возрастает. Судя по всему, все звёздные системы первого поколения были невелики и обладали неправильными очертаниями, а крупные дисковидные и эллиптические галактики возникли гораздо позже.

Космос
 

Рождение галактик

Галактики появились на свет вскоре после звёзд. Считается, что первые светила вспыхнули никак не позднее, чем спустя 150 млн лет после Большого взрыва. В январе 2011 года команда астрономов, обрабатывавших информацию с космического телескопа «Хаббл», сообщила о вероятном наблюдении галактики, чей свет ушёл в космос через 480 млн лет после Большого взрыва. В апреле ещё одна исследовательская группа обнаружила галактику, которая, по всей вероятности, уже вполне сформировалась, когда юной Вселенной было около 200 млн лет.

Условия для рождения звёзд и галактик возникли задолго до его начала. Когда Вселенная прошла возрастную отметку в 400 000 лет, плазма в космическом пространстве заменилась смесью из нейтрального гелия и водорода. Этот газ был ещё чересчур горяч, чтобы стянуться в молекулярные облака, дающие начало звёздам. Однако он соседствовал с частицами темной материи, изначально распределёнными в пространстве не вполне равномерно — где чуть плотнее, где разрежённее. Они не взаимодействовали с барионным газом и потому под действием взаимного притяжения свободно стягивались в зоны повышенной плотности. Согласно модельным вычислениям, уже через сотню миллионов лет после Большого взрыва в космосе образовались облака темной материи величиной с нынешнюю Солнечную систему. Они объединялись в более крупные структуры, невзирая на расширение пространства. Так возникли скопления облаков темной материи, а потом и скопления этих скоплений. Они втягивали в себя космический газ, предоставляя ему возможность сгущаться и коллапсировать. Таким путём появились первые сверхмассивные звезды, которые быстро взрывались сверхновыми и оставляли после себя черные дыры. Эти взрывы обогащали космическое пространство элементами тяжелее гелия, которые способствовали охлаждению коллапсирующих газовых облаков и потому делали возможным появление менее массивных звёзд второго поколения. Такие звезды уже могли существовать миллиарды лет и потому были в состоянии формировать (опять-таки с помощью темной материи) гравитационно связанные системы. Так возникли долгоживущие галактики, в том числе и наша.

Галактики 
 

«Многие детали галактогенеза ещё скрыты в тумане, — говорит Джон Корменди. — В частности, это относится к роли черных дыр. Их массы варьируют от десятков тысяч масс Солнца до абсолютного на сегодняшний день рекорда в 6,6 млрд солнечных масс, принадлежащего чёрной дыре из ядра эллиптической галактики М87, расположенной в 53,5 млн световых лет от Солнца. Дыры в центрах эллиптических галактик, как правило, окружены балджами, составленными из старых звёзд. Спиральные галактики могут вовсе не иметь балджей или же обладать их плоскими подобиями, псевдобалджами. Масса чёрной дыры обычно на три порядка меньше массы балджа — естественно, если оный наличествует. Эта закономерность подтверждается наблюдениями, охватывающими дыры массой от миллиона до миллиарда солнечных масс».

Как полагает профессор Корменди, галактические черные дыры набирают массу двумя путями. Дыра, окружённая полноценным балджем, растёт за счёт поглощения газа, который приходит к балджу из внешней зоны галактики. Во время слияния галактик интенсивность поступления этого газа резко возрастает, что инициирует вспышки квазаров. В результате балджи и дыры эволюционируют параллельно, что и объясняет корреляцию между их массами (правда, могут работать и другие, ещё неизвестные механизмы).

Эволюция Млечного пути
 

Исследователи из Питтсбургского университета, Калифорнийского университета в Ирвине и Атлантического университета Флориды смоделировали ситуацию столкновения Млечного пути и предшественницы карликовой эллиптической галактики в Стрельце (Sagittarius Dwarf Elliptical Galaxy, SagDEG). Они проанализировали два варианта столкновений – с лёгкой (3х10^10 масс Солнца) и тяжёлой (10^11 масс Солнца) SagDEG. На рисунке показаны результаты 2,7 млрд лет эволюции Млечного пути без взаимодействия с карликовой галактикой и с взаимодействием с лёгким и тяжёлым вариантом SagDEG.

Иное дело безбалджевые галактики и галактики с псевдобалджами. Массы их дыр обычно не превышают 104−106 солнечных масс. По мнению профессора Корменди, они подкармливаются газом за счёт случайных процессов, которые происходят недалеко от дыры, а не простираются на целую галактику. Такая дыра растёт вне зависимости от эволюции галактики или её псевдобалджа, чем и обусловлено отсутствие корреляции между их массами.

Растущие галактики

Галактики могут увеличивать и размер, и массу. «В далёком прошлом галактики делали это гораздо эффективней, нежели в недавние космологические эпохи, — объясняет профессор астрономии и астрофизики Калифорнийского университета в Санта-Круз Гарт Иллингворт. — Темпы рождения новых звёзд оценивают в терминах годового производства единицы массы звёздного вещества (в этом качестве выступает масса Солнца) на единицу объёма космического пространства (обычно это кубический мегапарсек). Во времена формирования первых галактик этот показатель был весьма невелик, а затем пошёл в быстрый рост, продолжавшийся до тех пор, пока Вселенной не исполнилось 2 млрд лет. Ещё 3 млрд лет он был относительно постоянным, потом начал снижаться почти пропорционально времени, и снижение это продолжается по сей день. Так что 7−8 млрд лет назад средний темп звёздообразования в 10−20 раз превышал современный. Большинство доступных наблюдению галактик уже полностью сформировались в ту далёкую эпоху».

Космос
 

На рисунке – результаты эволюции в различные моменты времени – начальная конфигурация (a), через 0,9 (b), 1,8 (c) и 2,65 млрд лет (d). Согласно модельным расчётам, бар и спиральные рукава Млечного Пути могли сформироваться в результате столкновений с SagDEG, которая изначально тянула на 50-100 миллиардов солнечных масс. Дважды она проходила сквозь диск нашей Галактики и теряла часть своей материи (и обычной, и темной), вызывая пертурбации его структуры. Нынешняя масса SagDEG не превышает десятков миллионов солнечных масс, и очередное столкновение, которое ожидают не позже, чем через 100 миллионов лет, скорее всего, станет для неё последним.

В общих чертах эта тенденция понятна. Галактики увеличиваются двумя основными способами. Во-первых, они получают свежий материал для звёздообразования, втягивая из окружающего пространства газ и частицы пыли. В течение нескольких миллиардов лет после Большого взрыва этот механизм исправно работал просто потому, что звёздного сырья в космосе хватало всем. Потом, когда запасы истощились, темп звёздного рождения упал. Однако галактики нашли возможность увеличивать его за счёт столкновения и слияния. Правда, для реализации этого варианта необходимо, чтобы сталкивающиеся галактики располагали приличным запасом межзвёздного водорода. Крупным эллиптическим галактикам, где его практически не осталось, слияние не помогает, зато в дисковидных и неправильных оно работает.

Курс на столкновение

Посмотрим, что происходит при слиянии двух примерно одинаковых галактик дискового типа. Их звезды практически никогда не сталкиваются — слишком велики расстояния между ними. Однако газовый диск каждой галактики ощущает приливные силы, обусловленные притяжением соседки. Барионное вещество диска теряет часть углового момента и смещается к центру галактики, где возникают условия для взрывного роста скорости звёздообразования. Часть этого вещества поглощается черными дырами, которые тоже набирают массу. В заключительной фазе объединения галактик черные дыры сливаются, а звёздные диски обеих галактик теряют былую структуру и рассредоточиваются в пространстве. В итоге из пары спиральных галактик образуется одна эллиптическая. Но это отнюдь не полная картина. Излучение молодых ярких звёзд способно выдуть часть водорода за пределы новорождённой галактики. В то же время активная аккреция газа на чёрную дыру вынуждает последнюю время от времени выстреливать в пространство струи частиц огромной энергии, подогревающие газ по всей галактике и тем препятствующие формированию новых звёзд. Галактика постепенно затихает — скорее всего, навсегда.

Галактика
 

Галактики неодинакового калибра сталкиваются по-иному. Крупная галактика способна поглотить карликовую (сразу или в несколько приёмов) и при этом сохранить собственную структуру. Этот галактический каннибализм тоже может стимулировать процессы звёздообразования. Карликовая галактика полностью разрушается, оставляя после себя цепочки звёзд и струи космического газа, которые наблюдаются как в нашей Галактике, так и в соседней Андромеде. Если же одна из сталкивающихся галактик не слишком превосходит другую, возможны даже более интересные эффекты.

В ожидании супертелескопа

Галактическая астрономия дожила почти до столетия. Она начала практически с нуля и достигла очень многого. Однако количество нерешённых проблем очень велико. Учёные ожидают очень много от инфракрасного орбитального телескопа «Джеймс Уэбб»..

Алексей Левин

Источник: www.popmech.ru